

Mineralogy Highlights

- * Thick phyllosilicate units throughout ellipse and surrounding region.
- * Variety of aqueous alteration minerals: nontronite, Fe²⁺/Mg-clays, sulfates, zeolites, opal, montmorillonite, kaolinite, allophane in ellipse and surrounding region.
- * Mixtures of clays, gypsum, jarosite and alunite consistent with saline lakes.
- * Several testable hypotheses.

Stratigraphy at ellipse and in region

Anywhere we land, we will have multiple types of phyllosilicates & aqueous materials nearby!

CRISM MTR3 parameters R=bd2290, G=min2250, B=bd2210 10X vertical -upper Al/Si-OH units-transition "doublet" unit-Fe/Mg-smectite unit

Stratigraphy at ellipse

View of multiple types of phyllosilicates, aqueous materials and cap rock.

-upper Al/Si-OH units

-mafic matrial

-Fe/Mg-smectite unit

CRISM MTR3
R=bd2290,
G=bdi1000vis,
B=bd2210
20X vertical

Stratigraphy in parts of region, outside ellipse

Mawrth Vallis Mineralogy Suggests Multiple Aqueous Geochemical Environments

- * Deposition of 150-200 m thick nontronite (Fe/Mg-smectite) unit during Noachian requiring high water/rock ratio environment.
 - -no evidence of thermal processing such as diagenesis.
 - -could be formed in surface or subsurface aqueous environment.
- * Changing redox conditions to form ferrous clays on top of nontronite:
 - -reducing conditions?
 - -leaching?
- * Neutral or mildly acidic conditions with high water/rock ratio environment (kaolinite, montmorillonite, opal).
 - -no evidence of thermal processing such as diagenesis.

Mawrth Vallis Mineralogy Suggests Multiple Aqueous Geochemical Environments

- * Saline environment:
 - -mixtures of clays and altered clays with small amounts of sulfate.
 - -isolated Ca-sulfates such as gypsum and basanite.
 - -isolated jarosite and alunite indicate localized low pH conditions.
- * Upper unit spectrally different nanophase aluminosilicates (e.g. allophane and imogolite) indicates well-drained system and/or cold environment.
- * Low water/rock ratio since allophane formed.
 - (if warm water had returned, clays would have formed from allophane)

Mawrth Vallis Mineralogy Suggests Multiple Aqueous Geochemical Environments

- * Phyllosilicate units emplaced in Noachian, erosion and fluvial alteration late Noachian.
- * Multiple potential formation processes to be evaluated:
 - -clay deposits in sedimentary basin.
 - -in situ aqueous alteration of basaltic ash-fall.
 - -pedogenesis in moist climate.
 - -aqueous transport of sediments.
 - -hydrothermal alteration.
- * Igneous processes at caprock-accessible in ellipse.

Ellipse

FRT0000B141, FRT0000BB59 (default parameters)

Blue box: gypsum?

Yellow circle: alunite?

FRT0000B141, FRT0000BB59

-upper Al/Si-OH units

-transition unit (sulfate/doublet)

-nontronite unit

FRT0000B141, FRT0000BB59 (default parameters)

Blue box: gypsum?

Yellow circle: alunite?

FRT0000B141, FRT0000BB59 PAL parameters

- -montmorillonite/opal
- -alunite?
- -kaolinite (white/pale yellow)

Outside ellipse: spatial relationship between nontronite, jarosite, other sulfates and altered clays

Rmin2250_Gbd2265_Bbd2290 FRT00003BFB

Spatial relationship between upper units

Unaltered Caprock

Nanophase aluminosilicates (e.g. allophane)

Al-phyllosilicates (montmorillonite, kaolinite), opal

FRT0000B141

R = BDI1000VIS

G = bd2190

B = bd2210

Bishop et al. 20170209

Summary of Minerals at Mawrth Vallis

Regional mineralogy	Minerals in ellipse
Fe3+/Mg-smectites	Fe3+/Mg-smectites
Al-phyllosilicates (kaolinite,	Al-phyllosilicates (kaolinite,
montmorillonite)	montmorillonite)
Fe2+/Mg-clays	Fe2+/Mg-clays
Hydrated silica	Hydrated silica
Allophane	Allophane
Ferrihydrite/FeOx	Ferrihydrite/FeOx
Sulfates (basanite, jarosite, alunite)	Sulfates
Zeolites	Zeolites?
Pyroxene	Pyroxene
Plagioclase	Plagioclase

Hypotheses to be Tested at Mawrth Vallis

* Redox transition:

- 1) did this form by a reducing agent that reduced the Fe in the nontronite unit?
- 2) did this form due to trapped organics that provided a reducing environment for new sediments?
- 3) did leaching of Fe²⁺ from subsequent ash get trapped at the nontronite boundary?

* Formation of nontronite-rich unit:

- 1) could the expansive nontronite unit have formed in a subsurface environment?
- 2) or was this formed in a sedimentary environment? (evaluate layering)

Hypotheses to be Tested at Mawrth Vallis

- * Formation of phyllosilicate-rich stratigraphy:
 - 1) Clay deposits in sedimentary basin?
 - 2) Pedogenesis in moist climate?
 - 3) In situ aqueous alteration of basaltic ash-fall?
 - 4) Aqueous transport of sediments?
 - 5) Hydrothermal alteration?

- 1) is this the result of a saline lake?
- 2) or could there be acid alteration of the nontronite?
- 3) or are there fine-scale distinct outcrops of these components that are just mixed when viewed from orbit?

Implications from Mineralogy at Mawrth Vallis

- * Thick phyllosilicate units dated to Noachian period.
- * Similar vertical stratigraphy across 100s (or 1000s) km implies regional aqueous processes. We can access this in ellipse.
- * Mineralogy shows multiple aqueous geochemical environments through time and small regional variations due to localized processes (e.g. ponds, evaporites).
- * Allophane and imogolite at top of vertical clay profile indicate the final change in climate: Low water/rock ratio or cold water similar to Antarctic Dry Valleys.
- * Unaltered caprock provides access to igneous material.

Implications from Mineralogy at Mawrth Vallis

- * Anywhere we land, we will have phyllosilicates nearby.
- * Modeling indicates highest abundances of phyllosilicates at Mawrth Vallis.
- * Several different types of habitats supported by mineralogy: subsurface, subaqueous, subaerial, and Fe-rich.
- * Redox interface between Fe³⁺ in nontronite and Fe²⁺ in Fe/Mg-clays could provide a microbial habitat.
- Several lithologic boundaries between distinct clay-bearing units could provide a microbial habitat.
- * Phyllosilicates, silica and allophane excellent for preserving biosignatures.

Conclusions from Mineralogy at Mawrth Vallis

- * Mars space exploration has demonstrated that Martian geology and environment evolved dramatically during the first few hundred million years. This is recorded in the mineralogical diversity placed in geomorphological context.
 - -visiting Mawrth Vallis will enable exploring this critical Noachian time period.
- * It is remarkable that Mars has uniquely preserved sites with records of ancient rocks.

 Investigating these is essential for determining if habitable sites were actually inhabited.
 - overarching goals of Mars2020 include characterizing potential habitable sites and searching for potential bio-relics.
 - -visiting Mawrth Vallis will enable investigating these likely habitable sites.
- * Marwth Vallis is packed with thick outcrops of phyllosilicates, a variety of aqueous materials, and pristine igneous cap rock throughout the ellipse.
 - -landing at Mawrth Vallis will guarantee finding a full range of minerals and exciting geological features that will enable tracing the evolution of Mars' ancient environment and climate.